Telegram Group & Telegram Channel
This is how data analytics teams work!

Example:
1) Senior Management at Swiggy/Infosys/HDFC/XYZ company needs data-driven insights to solve a critical business challenge.

So, they onboard a data analytics team to provide support.

2) A team from Analytics Team/Consulting Firm/Internal Data Science Division is onboarded.
The team typically consists of a Lead Analyst/Manager and 2-3 Data Analysts/Junior Analysts.

3) This data analytics team (1 manager + 2-3 analysts) is part of a bigger ecosystem that they can rely upon:
- A Senior Data Scientist/Analytics Lead who has industry knowledge and experience solving similar problems.
- Subject Matter Experts (SMEs) from various domains like AI, Machine Learning, or industry-specific fields (e.g., Marketing, Supply Chain, Finance).
- Business Intelligence (BI) Experts and Data Engineers who ensure that the data is well-structured and easy to interpret.
- External Tools & Platforms (e.g., Power BI, Tableau, Google Analytics) that can be leveraged for advanced analytics.
- Data Experts who specialize in various data sources, research, and methods to get the right information.

4) Every member of this ecosystem collaborates to create value for the client:
- The entire team works toward solving the client’s business problem using data-driven insights.
- The Manager & Analysts may not be industry experts but have access to the right tools and people to bring the expertise required.
- If help is needed from a Data Scientist sitting in New York or a Cloud Engineer in Singapore, it’s available—collaboration is key!

End of the day:
1) Data analytics teams aren’t just about crunching numbers—they’re about solving problems using data-driven insights.
2) EVERYONE in this ecosystem plays a vital role and is rewarded well because the value they create helps the business make informed decisions!
3) You should consider working in this field for a few years, at least. It’ll teach you how to break down complex business problems and solve them with data. And trust me, data-driven decision-making is one of the most powerful skills to have today!

I have curated best 80+ top-notch Data Analytics Resources 👇👇
https://www.tg-me.com/DataSimplifier

Like this post for more content like this 👍♥️

Share with credits: https://www.tg-me.com/sqlspecialist

Hope it helps :)



tg-me.com/pythonanalyst/980
Create:
Last Update:

This is how data analytics teams work!

Example:
1) Senior Management at Swiggy/Infosys/HDFC/XYZ company needs data-driven insights to solve a critical business challenge.

So, they onboard a data analytics team to provide support.

2) A team from Analytics Team/Consulting Firm/Internal Data Science Division is onboarded.
The team typically consists of a Lead Analyst/Manager and 2-3 Data Analysts/Junior Analysts.

3) This data analytics team (1 manager + 2-3 analysts) is part of a bigger ecosystem that they can rely upon:
- A Senior Data Scientist/Analytics Lead who has industry knowledge and experience solving similar problems.
- Subject Matter Experts (SMEs) from various domains like AI, Machine Learning, or industry-specific fields (e.g., Marketing, Supply Chain, Finance).
- Business Intelligence (BI) Experts and Data Engineers who ensure that the data is well-structured and easy to interpret.
- External Tools & Platforms (e.g., Power BI, Tableau, Google Analytics) that can be leveraged for advanced analytics.
- Data Experts who specialize in various data sources, research, and methods to get the right information.

4) Every member of this ecosystem collaborates to create value for the client:
- The entire team works toward solving the client’s business problem using data-driven insights.
- The Manager & Analysts may not be industry experts but have access to the right tools and people to bring the expertise required.
- If help is needed from a Data Scientist sitting in New York or a Cloud Engineer in Singapore, it’s available—collaboration is key!

End of the day:
1) Data analytics teams aren’t just about crunching numbers—they’re about solving problems using data-driven insights.
2) EVERYONE in this ecosystem plays a vital role and is rewarded well because the value they create helps the business make informed decisions!
3) You should consider working in this field for a few years, at least. It’ll teach you how to break down complex business problems and solve them with data. And trust me, data-driven decision-making is one of the most powerful skills to have today!

I have curated best 80+ top-notch Data Analytics Resources 👇👇
https://www.tg-me.com/DataSimplifier

Like this post for more content like this 👍♥️

Share with credits: https://www.tg-me.com/sqlspecialist

Hope it helps :)

BY Python for Data Analysts


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/pythonanalyst/980

View MORE
Open in Telegram


Python for Data Analysts Telegram | DID YOU KNOW?

Date: |

Telegram auto-delete message, expiring invites, and more

elegram is updating its messaging app with options for auto-deleting messages, expiring invite links, and new unlimited groups, the company shared in a blog post. Much like Signal, Telegram received a burst of new users in the confusion over WhatsApp’s privacy policy and now the company is adopting features that were already part of its competitors’ apps, features which offer more security and privacy. Auto-deleting messages were already possible in Telegram’s encrypted Secret Chats, but this new update for iOS and Android adds the option to make messages disappear in any kind of chat. Auto-delete can be enabled inside of chats, and set to delete either 24 hours or seven days after messages are sent. Auto-delete won’t remove every message though; if a message was sent before the feature was turned on, it’ll stick around. Telegram’s competitors have had similar features: WhatsApp introduced a feature in 2020 and Signal has had disappearing messages since at least 2016.

The global forecast for the Asian markets is murky following recent volatility, with crude oil prices providing support in what has been an otherwise tough month. The European markets were down and the U.S. bourses were mixed and flat and the Asian markets figure to split the difference.The TSE finished modestly lower on Friday following losses from the financial shares and property stocks.For the day, the index sank 15.09 points or 0.49 percent to finish at 3,061.35 after trading between 3,057.84 and 3,089.78. Volume was 1.39 billion shares worth 1.30 billion Singapore dollars. There were 285 decliners and 184 gainers.

Python for Data Analysts from ye


Telegram Python for Data Analysts
FROM USA